
Devoir maison no 9 - Correction

Exercice 1. (E3A PSI 2020 )

Pour tout entier naturel n, on définit sur l’intervalle J = [1 ; +∞[ la fonction fn définie par fn(x) =
(−1)n

√
1 + nx

.

1. Démontrer que la série de fonctions
∑

n⩾0

fn converge simplement sur J .

Idée : Il s’agit de regarder si pour chaque x ∈ J , la série numérique
∑

fn(x) est convergente.

Soit x ∈ J . Pour n ∈ N, on pose wn =
1√

1 + nx
de façon que fn(w) = (−1)nwn.

La suite (wn)n est positive, décroissante (inverse d’une suite croissante) et de limite nulle (car x > 0)
donc, d’après le critère spécial des séries alternées , la série

∑

(−1)nwn =
∑

fn(x) est convergente.

Ceci étant valable pour tout x ∈ J , la série de fonctions
∑

n⩾0

fn converge simplement sur J .

On note alors pour tout x ∈ J , φ(x) sa somme.

2. Montrer que cette série de fonctions ne converge pas normalement sur J .

Idée : On étudie la convergence de la série numérique
∑∥fn∥∞.

• Soit n ∈ N. Pour x ∈ J , on a |fn(x)| =
1√

1 + nx
. Par décroissance de x 7→ 1√

1 + nx
sur J , cette

fonction atteint son maximum en x = 1 et il vaut
1√

1 + n
. Ainsi ∀n ∈ N, ∥fn∥∞ =

1√
1 + n

.

• Comme
1√

1 + n
∼

+∞

1√
n

et la série de Riemann
∑ 1√

n
diverge (car 1/2 ⩽ 1), par critère d’équiva-

lence pour les séries à termes positifs, la série
∑

∥fn∥∞ diverge.

Autrement dit la série de fonctions
∑

fn ne converge pas normalement sur J .

3. Étudier sa convergence uniforme sur J .

Idée : Série alternée donc on utilise le résultat concernant la majoration du reste.

Soient n ∈ N et x ∈ J . On note Rn(x) =
+∞∑

k=n+1

fk(x).

La série
∑

fk(x) étant alternée, d’après le cours, on a |Rn(x)| ⩽ |fn+1(x)| =
1

√

1 + (n + 1)x
. En uti-

lisant comme en Q2 la décroissance de x 7→ 1
√

1 + (n + 1)x
, on obtient |Rn(x)| ⩽ 1√

n + 2
. Ce majorant

étant indépendant de x, par passage au sup, il vient ∥Rn∥∞ ⩽
1√

n + 2
. Comme

1√
n + 2

−−−−−→
n→+∞

0, par

encadrement, on a ∥Rn∥∞ −−−−−→
n→+∞

0, i.e. la série de fonctions
∑

fn converge uniformément sur J .

4. Déterminer ℓ = lim
x→+∞

+∞∑

n=0

fn(x).

Idée : Théorème de la double limite.

– Pour n = 0, on a f0(x) =
(−1)0

√
1 + n × 0

= 1 −−−−→
x→+∞

1, on pose donc ℓ0 = 1.

Pour n ∈ N
∗, on a fn(x) =

(−1)n

√
1 + nx

−−−−→
x→+∞

0 (car n > 0), on pose donc ℓn = 0.
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– D’après la question précédente, la série de fonctions
∑

fn converge uniformément sur J vers φ.

Par conséquent, d’après le théorème de la double limite, la série
∑

ℓn converge (mais c’est évident

ici) et surtout lim
x→+∞

φ(x) =
+∞∑

n=0

ℓn = 1 +
+∞∑

n=1

0 = 1 .

5. Pour n ∈ N
∗, on pose un =

(−1)n

√
n

. Justifier la convergence de la série de terme général un.

C’est encore une fois une conséquence directe du critère spécial des séries alternées (la suite (un)n est
alternée et la suite

(
|un|

)

n
est décroissante et converge vers 0).

On note a =
+∞∑

n=1

un sa somme.

6. / Montrer que l’on a au voisinage de l’infini : φ(x) = ℓ +
a√
x

+ O

(
1

x3/2

)

.

D’abord, d’après la question 4, on a ℓ = 1 et on remarque que pour tout x ∈ J , f0(x) = 1.

Pour x ∈ J , on considère donc φ(x) − ℓ =
+∞∑

n=1

fn(x) (noter l’indice de début de sommation).

Ensuite, pour tout n ∈ N
∗, on écrit

fn(x) =
(−1)n

√
1 + nx

=
(−1)n

√
xn

× 1
√

1

xn + 1

=
1√
x

(−1)n

√
n

(

1 +
1

xn

)−1/2

=
x→+∞

1√
x

(−1)n

√
n

(

1 − 1

2xn
+ o

( 1

x

))

=
x→+∞

1√
x

(−1)n

√
n

︸ ︷︷ ︸

=un

− 1

x3/2

(
(−1)n

2n3/2
+

(−1)n

√
n

o(1)

)

︸ ︷︷ ︸

=bn

Factorisation

Réécriture

D.L. lorsque x → +∞

D’après la question précédente, on sait que
∑

n⩾1

un converge et sa somme vaut a. Par ailleurs, la série

∑

n⩾1

bn converge (CSSA à nouveau) et on note B sa somme.

Finalement, en sommant l’égalité précédente pour n ∈ N
∗, il vient φ(x) − ℓ =

x→+∞

a√
x

+
B

x3/2
, i.e.

φ(x) =
x→+∞

ℓ +
a√
x

+ O

(
1

x3/2

)

.

Remarque : C’est un peu costaud pour une question d’un exercice 1 d’un sujet E3A !
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Exercice 2. ⋆

Dans cet exercice, on confond polynôme et fonction polynomiale.

1. Que dire d’un polynôme borné sur R ?

• Soit P ∈ R[X] non nul borné sur R. Notons d son degré et ad ̸= 0 son coefficient dominant.
On a P (x) ∼

x→+∞

adxd. Ainsi, si d ⩾ 1, on a P (x) −−−−→
x→+∞

±∞ (suivant le signe de ad), ce qui contredit

le fait que P soit borné sur R. Par conséquence d < 1, i.e. P est constant.
• Réciproquement, les polynômes constants (nuls ou non) sont clairement bornés sur R.

On a donc montré que les polynômes bornés sur R sont exactement les polynômes constants .

2. Montrer que la limite uniforme sur R d’une suite de polynômes est encore un polynôme.

Soit (Pn)n∈N une suite de polynômes convergeant uniformément sur R vers une fonction f , c’est-à-dire
∥Pn − f∥∞ −−−−−→

n→+∞

0.

Par définition de la limite avec ε = 1, il existe N ∈ N tel que pour tout n ⩾ N , ∥Pn − f∥∞ ⩽ 1 (K).
Soit n ∈ N vérifiant n ⩾ N . On a alors

∥PN − Pn∥∞ = ∥PN − f + f − Pn∥∞

⩽ ∥PN − f∥∞ + ∥Pn − f∥∞

⩽ 1 + 1 = 2.

inégalité triangulaire

(K)

En particulier, PN − Pn est un polynôme (car différence de deux polynômes) borné par 2. D’après la
question précédente, on en déduit qu’il est constant, notons a sa valeur.
Comme ceci est vrai pour tout n ⩾ N , on obtient que pour tout n ⩾ N , Pn = PN + a. En faisant
tendre n vers +∞, il vient f = PN + a et en particulier f est un polynôme .

Remarque : Sur un segment, on a un résultat tout à fait différent : toute fonction continue sur le segment
[a ; b] est limite uniforme d’une suite de fonctions polynomiales. (C’est le théorème de Stone-Weierstrass, cf
DS2bis, partie II.)
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